Loblolly pine growth effects and response to the spread of Lecanosticta acicola

Jaden King, Jonathan Cale, Timothy Shearman, Zhaofei Fan, and Lori G. Eckhardt

Forest Health Dynamics Laboratory

College of Forestry, Wildlife and Environment

Auburn University, Auburn AL

Introduction

Loblolly pine is important within the state of Alabama and the Southeast as a whole

Brown spot needle blight (BSNB) recently started causing detrimental affects to loblolly pine

Little is known about the spread of disease and impact on loblolly pine growth

Background

Photosynthesis drives forest production

More needle disease could result in less needle area

Less photosynthetic area results in less energy supplied to growth and defense mechanisms

Objectives

- 1. Determine impacts on the vigor of loblolly pine tree growth from BSNB
- 2. Understand environmental factors that may increase the spread of BSNB
- 3. Determine physiological impacts of disease on loblolly pine

Plot Locations

Plot layout

Data Collection

Height

DBH

Disease Rating

Crown Rating

Whole Plot- Ceptometer readings, BA, Convexity, Slope, Elevation, and Management history

Disease Rating

Disease rating

Weyerhaeuser Company, 2024

Crown Rating

Crown Dieback

Percent of living & dead crown with dead upper & outer branches.

Crown Density

Percent of crown outline with living branches & foliage.

Foliage Transparency

Percent sunlight transmitted through the living crown.

Live Crown Ratio

Percent of total tree height containing a living crown.

Crown Light

Percent of total tree receiving full light.

Crown Position

Relative position of each tree in relation to the main overstory canopy.

USFS, 2024

Physiology Measurements

RWC (%) =
$$\frac{\text{Fresh weight - Dry weight}}{\text{Turgid weight - Dry weight}} \times 100$$

Relative Water Content

Pressure Bomb

Needle Measurements

Yearly growth

Resin Secretion

Soil Collection

Cardinal directions around center subplot

Dry weight

Soil moisture content

Chemical analysis

Soil pH

Penetrometer readings

Plot Updates

Forest	Time since establishment	Number of plots	Number of trees	Total deaths
Conecuh	0.5 years	2	189	2
Bankhead	0.5 years	3	135	44
Tuskegee	0.5 years	3	134	2
Osko	1.5 years	5	209	10
Longleaf	1.5 years	2	236	29
Stallworth	1.5 years	6	580	49

Whole Plot Results

Crown Rating Results

Is premature needle shed affecting this?

Height Growth Results- South Plots

Next Steps

Continue to monitor spread of disease within plots disease

Analyze 2024 crown rating data

Finish analyzing soil samples

Summary

Discover the means of transmission of this disease and its impact on the growth and health of trees

Acknowledgements

Committee

Dr. Lori Eckhardt
Dr. Jonathan Cale
Dr. Timothy Shearman
Dr. Joseph Fan

Collaborators

Dr. Emily Carter
Dr. Brian Via
Dr. Iris Vega
Dr. Janna Willoughby
Dr. Lana Narine
Ryan Mitchell
Kris Bradley
Susan Turner

Forest Products

Development Center

Lab manager

Jessica Baldwin

Graduate students

Christian Rivera
Temitope Folorunso
Emmanuel Nyarko
Gabriel Silva
Swati Singh

Facilities

Forest Health Dynamics Lab Geospatial Analytics Lab Forest Products Lab

Landowners

Stallworth Land Company Longleaf Land & Timber Co. Glover Family (Osko Forest)

Williams Family

US Forest Service

Undergraduates

Angel Cagle
Andrew Howard
Maddox Golden
Drew Conway
Nathan Kurtz
Garrett Gaar
Gracey Goldsby
Skylar Alvarez
Lillian Avis
Caleb McCrory

Blake Johnson

Forest

Thank you!

Questions?

Results-physiology pairing

Samples with disease: 35

Samples with no disease: 10

Most on 1 samples: 3

Least on 1 sample: 0

Results- resin

Resin secretion increases in trees with higher disease rating, height, and age

Relative water content preliminary results

Resin analysis

α-pinene sandaracopimaric acid

β-pinene isopimaric acid

Camphene neoabietic acid

Limonene palustric acid

Limonene-α-phellandrene merkusic acid

β-myrcene dehydroabietic acid

4-allylanisole abietic acid